Above-dam life history diversity of juvenile spring Chinook Salmon (Oncorhynchus tshawytscha)

Implications for life cycle modelling and population recovery

Mairin Deith, Tom Porteus, Roberto Licandeo, Eric Parkinson, Aaron Greenberg, Oliver Murray & Murdoch McAllister University of British Columbia Institute for The Oceans and Fisheries

Objectives

- 1. Describe the importance of diverse juvenile migratory types above dams, including fish rearing in-reservoir
- 2. Modelling how dam operations might impact the diversity of juvenile migrant types
- 3. Summarize results modelling the diversity of juvenile migrant types in the Upper Willamette

Juvenile migrant type diversity: Importance

• Spring Chinook salmon express phenotypic diversity in juvenile and adult migration types

Juvenile migrant type diversity: Importance

- Spring Chinook salmon express phenotypic diversity in juvenile and adult migration types
- Within-population diversity believed to increase population fitness
 - Diversify resource use, robust to dynamic environments, future adaptability

Moore et al. 2014, <u>doi:10.1111/1365-2656.12212</u>; Sturrock et al. 2015, <u>doi:10.1371/journal.pone.0122380</u>

Juvenile migrant type diversity: Importance

- Spring Chinook salmon express phenotypic diversity in juvenile and adult migration types
- Within-population diversity believed to increase population fitness
- → Valuable to consider how proposed dam passage improvements may impact juvenile out-migrant diversity

Moore et al. 2014, <u>doi:10.1111/1365-2656.12212</u>; Sturrock et al. 2015, <u>doi:10.1371/journal.pone.0122380</u>

 USACE considering EIS alternatives = expected changes to dam passage efficiency (% able to pass) and survival

e.g. Cougar Dam in the McKenzie subbasin

 USACE considering EIS alternatives = expected changes to dam passage efficiency (% able to pass) and survival

Based on age of attempted dam passage, fish that do not pass assumed to die

→ Ignores in-reservoir rearing and how it may be impacted by dam passage

e.g. Cougar Dam in the McKenzie subbasin

- USACE considering EIS alternatives = expected changes to dam passage efficiency (% able to pass) and survival
- If DPE is higher and in-reservoir rearing shortened, tradeoffs to growth:
 Benefits
 - Smaller size, higher passage survival (Keefer et al. 2012)
 - Lower risk of in-reservoir predation/parasitism*

- USACE considering EIS alternatives = expected changes to dam passage efficiency (% able to pass) and survival
- If DPE is higher and in-reservoir rearing shortened, tradeoffs to growth:
 Benefits
 - Smaller size, higher passage survival (Keefer et al. 2012)
 - Lower risk of in-reservoir predation/parasitism*

- Smaller body size, lower smolt-toadult survival
- Productivity difference between reservoirs and streams

- USACE considering EIS alternatives = expected changes to dam passage efficiency (% able to pass) and survival
- If DPE is higher and in-reservoir rearing shortened:

Lacking experiments, use life cycle models to project diversity of JMTs under dam passage alternatives

reservoir*

* Mitigated by dam operations like drawdown

In the Upper Willamette Basin, up to six juvenile migrant types in freshwater

• **Stage 1:** age at which fish leave spawning areas

Schroeder et al. 2016, <u>doi:10.1139/cjfas-2015-0314</u>; Bourret et al. 2016, <u>https://doi.org/10.1111/jfb.12505</u>

Schroeder et al. (2016)

In the Upper Willamette Basin, up to six juvenile migrant types in freshwater

• **Stage 1:** age at which fish leave spawning areas

Movers & <mark>stayers</mark> (aka. ocean & stream type)

Schroeder et al. 2016, <u>doi:10.1139/cjfas-2015-0314</u>; Bourret et al. 2016, <u>https://doi.org/10.1111/jfb.12505</u>

Schroeder et al. (2016)

In the Upper Willamette Basin, up to six juvenile migrant types in freshwater

- **Stage 1:** age at which fish leave spawning areas
- Stage 2: age at which fish smolt and migrate to sea

Schroeder et al. 2016, <u>doi:10.1139/cjfas-2015-0314</u>; Bourret et al. 2016, <u>https://doi.org/10.1111/jfb.12505</u>

These six types apply to below-dam juveniles: What about above-dam fish whose migration patterns can be impacted by dam passage alternatives?

To model EIS alternatives: designated six juvenile migrant types (JMTs)

- Stage 1: age at which fish leave spawning areas
- Stage 2: age at which fish smolt and migrate to sea

To model EIS alternatives: designated six juvenile migrant types (JMTs)

- Stage 1: age at which fish leave spawning areas
 - **1. Fry** migrate to reservoir directly
 - 2. Subyearlings rear in spawning areas over summer
 - **3. Yearlings** rear in spawning areas over summer & winter

Same types as those used by the Fish Benefits Workbook to estimate dam passage survival and efficiency under different EIS alternatives

To model EIS alternatives: designated six juvenile migrant types (JMTs)

• Stage 1: age at which fish leave spawning areas

 \rightarrow Estimate proportions of emergent fry of each type

Yr in resv

- Outmigration monitoring (e.g. Monzyk et al. 2011; Romer et al. 2012-2017)
 - Juvenile fish captured in RSTs at heads of reservoirs in each subbasin

Image credit: US Army Corps of Engineers

18

Monzyk et al. 2011, *Pilot Head-of-Reservoir Juvenile Salmonid Monitoring* (ODFW report); Romer et al. 2012-2017, *Juvenile Salmonid Outmigration Monitoring at Willamette Valley Project Reservoirs* (ODFW reports)

- Outmigration monitoring (e.g. Monzyk et al. 2011; Romer et al. 2012-2017)
 - Juvenile fish captured in RSTs at heads of reservoirs in each subbasin

Image credit: US Army Corps of Engineers

Data from RST at Detroit dam head of reservoir, North Santiam

- Outmigration monitoring (e.g. Monzyk et al. 2011; Romer et al. 2012-2017)
 - Juvenile fish captured in RSTs at heads of reservoirs in each subbasin

IPA team applied **date and size-based rules** informed by growth curve estimates: **Fry**: Fork length <60mm

> Yearlings: Fork length >60mm & migrating in January after emergence

Data from RST at Detroit dam head of reservoir, North Santiam

- Outmigration monitoring (e.g. Monzyk et al. 2011; Romer et al. 2012-2017)
 - Juvenile fish captured in RSTs at heads of reservoirs in each subbasin

IPA team applied **date and size-based rules** informed by growth curve estimates: **Fry**: Fork length <60mm

Subyearlings: all others

Yearlings: Fork length >60mm & migrating in January after emergence

Note: No incorporation of inter-year variation in proportions moving to reservoir at each stage

To model EIS alternatives: designated six juvenile migrant types (JMTs) following Schroeder 2016

- Stage 1: age at which fish leave spawning areas
- Stage 2: age at which fish smolt and migrate to sea

DPE and passage survival estimates from Fish Benefits Workbook; Reservoir survival estimates from expert workshops (e.g., COP 2015)

Zabel et al. 2015 (NWFS Report)

DPE and passage survival estimates from Fish Benefits Workbook; Reservoir survival estimates from expert workshops (e.g., COP 2015)

Zabel et al. 2015 (NWFS Report)

DPE and passage survival estimates from Fish Benefits Workbook; Reservoir survival estimates from expert workshops (e.g., COP 2015)

Zabel et al. 2015 (NWFS Report)

In reservoirs, juveniles can:

Attempt to pass the dam 1a. **Pass and survive** = Fry migrants 1b. **Do not pass** = Attempt to pass as

...joining fry who voluntarily reared and subyearling migrants entering the reservoir

Fry

DPE and passage survival estimates from Fish Benefits Workbook; Reservoir survival estimates from expert workshops (e.g., COP 2015)

Zabel et al. 2015 (NWFS Report)

In reservoirs, juveniles can:

Attempt to pass the dam
 1a. Pass and survive = Fry migrants
 1b. Do not pass = Attempt to pass as
 an older migrant

→ Influenced by estimated proportion of each type that volitionally rears (from expert workshops)

Fry

Six migratory types, impacted by split of fry/subyearling/yearlings and rearing patterns

Zabel et al. 2015 (NWFS Report)

In the McKenzie river: Changes to DPE/DPS at Cougar dam increases JMT that **enters the reservoir as fry and passes the dam as a subyearling**

Subyr-res: Fry migrants who rear in-reservoir then pass as subyearlings

In the McKenzie river: Changes to DPE/DPS at Cougar dam increases JMT that **enters the reservoir as fry and passes the dam as a subyearling**

In the McKenzie river: Changes to DPE/DPS at Cougar dam increases JMT that **enters the reservoir as fry and passes the dam as a subyearling**

Note: JMT diversity outcomes are subbasin specific

extinction risk when **Subyr-res** is dominant

Note: JMT diversity outcomes are subbasin specific

Note: JMT diversity outcomes are subbasin specific

JMT diversity: Limitations and assumptions

- Limitations:
 - Screw trap data cannot distinguish migrants who choose to rear from those that were diverted back to the reservoir by the dam
 - Could be informed by, e.g., 3D acoustic telemetry

- Proportion of fry/subyearling/ yearling migrant types influenced by other factors
 - e.g., density-dependent processes (Zimmerman et al. 2015)
 - e.g. evolution in response to dams (Waples et al. 2017)

Waples et al. 2017, doi:10.1111/eva.12468; Zimmerman et al. 2015, doi:10.1080/00028487.2015.1017658

Conclusions

- Changes to dam passage efficiency and outplanting can have large impacts on JMT diversity, but not universally
 - Long-term impacts depend on relative productivity of migrant types, future conditions

 Despite trade-offs between migrant types; diversity itself is advantageous Definition of the juvenile migrant types used in the UBC Chinook life cycle model compared to the JMTs documented by Schroeder et al. (2016).

Juvenile migrant type	Schroeder et al. (2016) life history type
(life stage – rearing location before smolting)	(migrant type – smolt type)
Fry	Mover – spring subyearling
Subyearling – reservoir rearing in summer	Mover – fall subyearling
Subyearling – spawning area rearing in summer	Stayer-fall migrant – autumn subyearling
Yearling – reservoir rearing in summer & winter	Mover – spring yearling
Yearling – spawning area in summer, reservoir in winter	Stayer-fall migrant – spring yearling
Yearling – spawning area rearing in summer & winter	Stayer-spring migrant – spring yearling

Observed growth from RST data: South Santiam above Foster

Observed growth from RST data: North Santiam above Detroit

30/6/14

Subyearling

29/8/14

28/10/14 27/12/14

Yearling

160

140

120

100

80

60

40

20

0

1/1/14

2/3/14

1/5/14

PredLength.mm

Observed growth from RST data: North Santiam above Detroit

Chinook size in Detroit reservoir by life history growth group

AIM: to get mean size at passage of each life history growth type under each Alternative 0.8125 (mm/day)

Growth			
	-	-	_

	Growth																	
Mon_Yr	days	Jan_(D F	eb_0	Mar_0	Apr_0	May_0	Jun_0	Jul_0	Aug_0	Sep_0	Oct_0	Nov_0	Dec_0	Jan_1	Feb_1	Mar_1	Apr_1
Yr0-Jar	ו	1	35															
Yr0-Jar	ı	3	38	35														
Yr0-Feb)	5	42	39	3	5								Spring	g SubYrlg	g (Fry)		
Yr0-Ma	r 1	0	50	48	4	4 3	6							Fall Su	ubYrlg (R	esv)		
							•							Fall Su	ubYrlg (S	tream)		
Yr0-Ap	r 3	1	75	73	6	9 6	51 3	7						Spring	yrlg (Re	esv W+S)	
Yr0-Jur	ו <mark>3</mark>	0	100	97	' 9	38	5 6	2 4	.5					Spring	g Yrlg (Re	esv W or	, nlv)	
Yr0-Ju	I 3	1	125	122	. 11	8 11	.0 8	7 7	0	60				Spring	yrlg (St	ream)		
Yr0-Au	g <mark>3</mark>	1	150	148	8 14	3 13	6 11	29	5	85 7	7					leany		
Yr0-Sep	o 3	0	174	172	. 16	8 16	0 13	7 12	0 1	10 10	1 8	9						
Yr0-Oc	t 1	5	187	184	18	0 17	2 14	9 13	2 1	22 11	.3 10	1 9	96					
Yr0-Nov	/	5	191	188	8 18	4 17	6 15	3 13	6 1	26 11	7 10	5 10	0 10	0				
Yr0-Deo	C	3	193	191	. 18	7 17	9 15	5 13	9 1	28 12	0 10	8 10	03 10	3 103	3			
Yr1-Jar	า	1	194	191	. 18	7 18	0 15	6 13	9 1	29 12	<mark>1</mark> 10	8 10)3 10 [,]	4 104	4 10	4		
Yr1-Feb)	3	196	194	19	0 18	2 15	9 14	2 1	32 12	<mark>.3</mark> 11	.1 10	06 10	6 106	5 10	7 10)5	
Yr1-Ma	r	5	200	198	19	4 18	6 16	3 14	6 1	36 12	<mark>7</mark> 11	.5 11	.0 11	0 110) 11	1 10	9 10	6
Yr1-Ap	r 1	0	208	206	20	2 19	4 17	1 15	4 1	44 13	<mark>5</mark> 12	.3 11	11	8 118	3 11	9 11	.7 11	.4 106

Chinook size in Detroit reservoir by life history growth group

AIM: to get mean size at passage of each life history growth type under each Alternative

0.8125 (mm/day)

Observed growth from RST data

Generalised logistic function

From Wikipedia, the free encyclopedia

The generalized logistic function or curve, also known as **Richards' curve**, originally developed for growth modelling, is an extension of the logistic or sigmoid functions, allowing for more flexible S-shaped curves:

$$Y(t)=A+rac{K-A}{(C+Qe^{-Bt})^{1/
u}}$$

where Y = weight, height, size etc., and t = time.

It has five parameters:

• A: the lower asymptote;

• K: the upper asymptote when C = 1. If A = 0 and C = 1 then K is called the carrying capacity;

- *B*: the growth rate;
- u > 0 : affects near which asymptote maximum growth occurs.
- Q: is related to the value Y(0)

-
$$C$$
: typically takes a value of 1. Otherwise, the upper asymptote is $A + rac{K-A}{C^{1/
u}}$

Parameters for North Santiam above Detroit

	2011	2012	2013	2014	2015	2016
lower	35.2702635	34.7700743	37.3574169	34.3568932	34.6631158	35.9129187
upper	103.293968	112.927676	103.916528	104.843003	112.627744	99.0211348
b	0.01754927	0.03166386	0.0240977	0.02045229	0.01701698	0.02849059
v	0.00457926	0.00100911	0.00314983	0.0038431	0.00590044	0.00244563
q	0.25629108	0.60253626	0.34330681	0.29197036	0.13354944	0.37871153
n.obs	1479	155	306	1097	1590	1253
SS	84201.6493	10684.5048	15022.3563	45416.6636	41367.1013	32602.7521